Micronutrient-Endocrine Interactions: A Critical Review of the Molecular Mechanisms Underlying Hormonal Regulation – A Case Study from Pakistan, Iran, Azerbaijan and Russia

Authors

  • Futrus Abid Lecturer, Food Science and Technology, Human Nutrition and Dietetics, University of Okara, Okara.
  • Muhammad Husnain Lecturer, Food Science and Technology, Human Nutrition and Dietetics, University of Okara, Okara.

Keywords:

Endocrine functions, Hormone regulation, Micronutrients, Zinc, Selenium, Iron

Abstract

Essential micronutrients are vital for regulating hormonal balance and supporting the integrity of the endocrine system, which is critical for maintaining optimal human health. By examining facts and analyzing data collected from various primary and secondary sources belong to Pakistan, Iran, Azerbaijan and Russia, this review article interrogates the crucial roles of key micronutrients -- zinc, iodine, selenium, iron and calcium (vitamin D) -- on the endocrine system. Adequate intake of these essential nutrients is important for hormone production. Excess or deficiency of these nutrients can adversely affect health, disturb hormonal balance, and lead to severe diseases. Zinc is crucial for maintaining osteo-muscular integrity, regulating thyroid hormone biosynthesis, and exerting antioxidant properties. Dysregulation of zinc is implicated in the pathogenesis of diabetes mellitus and reproductive dysfunction. Iodine is essential for thyroid hormone synthesis, and its dysregulation can result in hypothyroidism or hyperthyroidism. Additionally, iodine influences cardiovascular health and glucose metabolism. Adequate iodine intake is particularly crucial for pregnant and lactating women to ensure fetal health. In addition to other nutrients, selenium plays a pivotal role in glucose regulation, the production of brain hormones, and metabolism. Its deficiency can lead to metabolic syndrome, obesity, diabetes, and fertility issues. Furthermore, iron overload in thalassemia patients adversely affects hormonal balance. It impacts growth due to abnormal mineralization of bones, disturbs normal sexual development, disrupts thyroid hormone production, and causes diabetes mellitus. Vitamin D and calcium are essential for bone health and parathyroid hormone production. Uncontrolled regulation of these hormones can lead to osteoporosis and hyperthyroidism. Moreover, vitamin D is important for heart and muscle contraction, and its disturbance can result in severe disorders such as myocardial infarction and stroke. This review emphasizes the critical role of micronutrient homeostasis in maintaining endocrine function and highlights the underlying mechanisms by which these nutrients modulate hormonal regulation. The article underscores the importance of optimizing micronutrient status to prevent endocrinopathies and promote overall physiological well-being.

References

La Perle, K. M. D., & Dintzis, S. M. (2017). Endocrine system. In Elsevier eBooks (pp. 251–273). https://doi.org/10.1016/b978-0-12-802900-8.00015-4

Hackney, A. C., & Lane, A. R. (2015). Exercise and the regulation of endocrine hormones. Progress in Molecular Biology and Translational Science, 293–311. https://doi.org/10.1016/bs.pmbts.2015.07.001

Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., & Kate, E. C. (2020). Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. International Journal of Food Sciences, 3(1), 1–32. https://doi.org/10.47604/ijf.1024

Kopp, P. (2001). Human Genome and Diseases: Review¶The TSH receptor and its role in thyroid disease. Cellular and Molecular Life Sciences, 58(9), 1301–1322. https://doi.org/10.1007/pl00000941

Shergill-Bonner, R. (2017). Micronutrients. Paediatrics and Child Health, 27(8), 357–362. https://doi.org/10.1016/j.paed.2017.04.002

Shenkin, A. (2006). The key role of micronutrients☆. Clinical Nutrition, 25(1), 1–13. https://doi.org/10.1016/j.clnu.2005.11.006

Shenkin, A. (2006). Micronutrients in health and disease. Postgraduate Medical Journal,82(971),559–567.https://doi.org/10.1136/pgmj.2006.047670

Black, R. E. (2001). Micronutrients in pregnancy. British Journal of Nutrition, 85(S2), S193–S197. https://doi.org/10.1079/bjn2000314

Baltaci, A. K., Mogulkoc, R., & Baltaci, S. B. (2019). The role of zinc in the endocrine system. https://hdl.handle.net/20.500.12395/38324

Krishnamurthy, H. K., Reddy, S., Jayaraman, V., Krishna, K., Rajasekaran, K. E., Wang, T., Bei, K., & Rajasekaran, J. J. (2023). Association of micronutrients and prevalence of antibodies in hyperthyroidism. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.109375

Barceloux D. G. (1999). Zinc. Journal of toxicology. Clinical toxicology, 37(2), 279–292. https://doi.org/10.1081/clt-100102426

King, J. C., Shames, D. M., & Woodhouse, L. R. (2000). Zinc homeostasis in humans. Journal of Nutrition, 130(5), 1360S-1366S. https://doi.org/10.1093/jn/130.5.1360s

Agnew, U. M., & Slesinger, T. L. (2023). Zinc toxicity. In StatPearls. StatPearls Publishing. PMID: 32119435

Brandão-Neto, J., Saturnino, A. C. R. D., Leite, L. D., De Medeiros Rocha, É. D., Marcos, C. M. P., Da Silva, C. a. B., Marchini, J. S., De Rezende, A. A., Almeida, M. D. G., & Da Cunha Medeiros, A. (2006). Lack of acute zinc effect on thyrotropin-releasing hormone–stimulated thyroid-stimulating hormone secretion during oral zinc tolerance test in healthy men. Nutrition Research, 26(10), 493–496. https://doi.org/10.1016/j.nutres.2006.08.010

Kucharzewski, M., Braziewicz, J., Majewska, U., & Gózdz, S. (2003). Copper, Zinc, and Selenium in Whole Blood and Thyroid Tissue of People with Various Thyroid Diseases. Biological Trace Element Research, 93(1–3), 9–18. https://doi.org/10.1385/bter:93:1-3:9

Molenda, M., & Kolmas, J. (2023). The role of zinc in bone tissue health and regeneration—a review. Biological Trace Element Research, 201(12), 5640–5651. https://doi.org/10.1007/s12011-023-03631-1

Formigari, A., Irato, P., & Santon, A. (2007). Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 146(4), 443–459. https://doi.org/10.1016/j.cbpc.2007.07.010

Catania, A. S., Barros, C. R., & Ferreira, S. R. (2009). Vitaminas e minerais com propriedades antioxidantes e risco cardiometabólico: controvérsias e perspectivas [Vitamins and minerals with antioxidant properties and cardiometabolic risk: controversies and perspectives]. Arquivos brasileiros de endocrinologia e metabologia, 53(5), 550–559. https://doi.org/10.1590/s0004-27302009000500008

Monaco, F. (2003). Classification of Thyroid Diseases: Suggestions for a revision. The Journal of Clinical Endocrinology & Metabolism, 88(4), 1428–1432. https://doi.org/10.1210/jc.2002-021260

Garber, J. R., Cobin, R. H., Gharib, H., Hennessey, J. V., Klein, I., Mechanick, J. I., Pessah-Pollack, R., Singer, P. A., & Woeber, K. A. (2012). Clinical Practice Guidelines for Hypothyroidism in Adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocrine Practice, 18(6), 988–1028. https://doi.org/10.4158/ep12280.gl

Chausmer, A. B. (1998). Zinc, insulin and diabetes. Journal of the American College of Nutrition, 17(2), 109–115. https://doi.org/10.1080/07315724.1998.10718735

Arquilla, E. R., Packer, S., Tarmas, W., & Miyamoto, S. (1978). The effect of zinc on insulin metabolism. Endocrinology, 103(4), 1440–1449. https://doi.org/10.1210/endo-103-4-1440

Delange, F. (1993). Requirements of iodine in humans. In Springer eBooks (pp. 5–15). https://doi.org/10.1007/978-1-4899-1245-9_1

Lazarus, J. H. (2015). The importance of iodine in public health. Environmental Geochemistry and Health, 37(4), 605–618. https://doi.org/10.1007/s10653-015-9681-4

Leung, A. M., & Braverman, L. E. (2013). Consequences of excess iodine. Nature Reviews Endocrinology, 10(3), 136–142. https://doi.org/10.1038/nrendo.2013.251

World Health Organization. (2005). Vitamin and mineral requirements in human nutrition (2nd ed.). World Health Organization.

Leung, A., Pearce, E. N., & Braverman, L. E. (2010). Role of iodine in thyroid physiology. Expert Review of Endocrinology & Metabolism, 5(4), 593–602. https://doi.org/10.1586/eem.10.40

Liu, J., Liu, L., Jia, Q., Zhang, X., Jin, X., & Shen, H. (2019). Effects of excessive iodine intake on blood glucose, blood pressure, and blood lipids in adults. Biological Trace Element Research, 192(2), 136–144. https://doi.org/10.1007/s12011-019-01668-9

Laurberg, P., Cerqueira, C., Ovesen, L., Rasmussen, L. B., Perrild, H., Andersen, S., Pedersen, I. B., & Carlé, A. (2010). Iodine intake as a determinant of thyroid disorders in populations. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1), 13–27. https://doi.org/10.1016/j.beem.2009.08.013

Dorea, J. G. (2002). Iodine nutrition and breast feeding. Journal of Trace Elements in Medicine and Biology, 16(4), 207–220. https://doi.org/10.1016/s0946-672x(02)80047-5

Bath, S. C. (2024). Thyroid function and iodine intake: global recommendations and relevant dietary trends. Nature Reviews Endocrinology, 20(8), 474–486. https://doi.org/10.1038/s41574-024-00983-z

KöHrle, J., Jakob, F., Contempre, B., & Dumont, J. E. (2005). Selenium, the thyroid, and the endocrine system. Endocrine Reviews, 26(7), 944–984. https://doi.org/10.1210/er.2001-0034

Ventura, M., Melo, M., & Carrilho, F. (2017). Selenium and thyroid disease: From pathophysiology to treatment. International Journal of Endocrinology, 2017, 1–9. https://doi.org/10.1155/2017/1297658

Cavedon, E., Manso, J., Negro, I., Censi, S., Serra, R., Busetto, L., Vettor, R., Plebani, M., Pezzani, R., Nacamulli, D., & Mian, C. (2020). Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. International Journal of Endocrinology, 2020, 1–7. https://doi.org/10.1155/2020/4802739

Peters, K. M., Carlson, B. A., Gladyshev, V. N., & Tsuji, P. A. (2018). Selenoproteins in colon cancer. Free Radical Biology and Medicine, 127, 14–25. https://doi.org/10.1016/j.freeradbiomed.2018.05.075

Schomburg, L. (2019). The other view: the trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. HORMONES, 19(1), 15–24. https://doi.org/10.1007/s42000-019-00150-4

Yuan, Z., Xu, X., Ye, H., Jin, L., Zhang, X., & Zhu, Y. (2015). High levels of plasma selenium are associated with metabolic syndrome and elevated fasting plasma glucose in a Chinese population: A case-control study. Journal of Trace Elements in Medicine and Biology, 32, 189–194. https://doi.org/10.1016/j.jtemb.2015.07.009

Vinceti, M., Filippini, T., & Rothman, K. J. (2018). Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. European Journal of Epidemiology, 33(9), 789–810. https://doi.org/10.1007/s10654-018-0422-8

Bj, K., Sm, K., Kh, P., Hs, P., & Cs, M. (2014). Levels of circulating selenoprotein P, fibroblast growth factor (FGF) 21 and FGF23 in relation to the metabolic syndrome in young children. International Journal of Obesity, 38(12), 1497–1502. https://doi.org/10.1038/ijo.2014.45

Kryczyk‐Kozioł, J., Zagrodzki, P., Prochownik, E., Błażewska‐Gruszczyk, A., Słowiaczek, M., Sun, Q., Schomburg, L., Ochab, E., & Bartyzel, M. (2021). Positive effects of selenium supplementation in women with newly diagnosed Hashimoto’s thyroiditis in an area with low selenium status. International Journal of Clinical Practice, 75(9). https://doi.org/10.1111/ijcp.14484

Zhou, H., Wang, T., Li, Q., & Li, D. (2018). Prevention of Keshan Disease by Selenium Supplementation: a Systematic Review and Meta-analysis. Biological Trace Element Research, 186(1), 98–105. https://doi.org/10.1007/s12011-018-1302-5

Mintziori, G., Mousiolis, A., Duntas, L. H., & Goulis, D. G. (2019). Evidence for a manifold role of selenium in infertility. HORMONES, 19(1), 55–59. https://doi.org/10.1007/s42000-019-00140-6

Boitani, C., & Puglisi, R. (2009). Selenium, a key element in spermatogenesis and male fertility. Advances in Experimental Medicine and Biology, 65–73. https://doi.org/10.1007/978-0-387-09597-4_4

Hansen, J. C., & Deguchi, Y. (1996). Selenium and Fertility in Animals and Man–A Review. Acta Veterinaria Scandinavica, 37(1), 19–30. https://doi.org/10.1186/bf03548116

Bleau, G., Lemarbre, J., Faucher, G., Roberts, K. D., & Chapdelaine, A. (1984). Semen selenium and human fertility. Fertility and Sterility, 42(6), 890–894. https://doi.org/10.1016/s0015-0282(16)48261-0

Ingold, I., Aichler, M., Yefremova, E., Roveri, A., Buday, K., Doll, S., Tasdemir, A., Hoffard, N., Wurst, W., Walch, A., Ursini, F., Angeli, J. P. F., & Conrad, M. (2015). Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (GPX4) confers a dominant-negative effect in male fertility. Journal of Biological Chemistry, 290(23), 14668–14678. https://doi.org/10.1074/jbc.m115.656363

Qazi, I. H., Angel, C., Yang, H., Pan, B., Zoidis, E., Zeng, C., Han, H., & Zhou, G. (2018). Selenium, selenoproteins, and Female Reproduction: A review. Molecules, 23(12), 3053. https://doi.org/10.3390/molecules23123053

De Dreuzy, E., Bhukhai, K., Leboulch, P., & Payen, E. (2016). Current and future alternative therapies for beta-thalassemia major. Biomedical Journal, 39(1), 24–38. https://doi.org/10.1016/j.bj.2015.10.001

Taher, A. T., Musallam, K. M., Karimi, M., El-Beshlawy, A., Belhoul, K., Daar, S., Saned, M., El-Chafic, A., Fasulo, M. R., & Cappellini, M. D. (2009). Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood, 115(10), 1886–1892. https://doi.org/10.1182/blood-2009-09-243154

Kattamis, C., Liakopoulou, T., & Kattamis, A. (1990). Growth and Development in Children with Thalassaemia Major. Acta Paediatrica, 79(s366), 111–117. https://doi.org/10.1111/j.1651-2227.1990.tb11611.x

Pantelakis, S. (1994). Growth patterns in patients with thalassaemia major. Acta Paediatrica, 83(s406), 109–110. https://doi.org/10.1111/j.1651-2227.1994.tb13437.x

Al-Hakeim, H. K. a. H., & Al-Hakany, M. F. M. (2013, December 2). The effect of iron overload on the function of some endocrine glands in Β-Thalassemia major patients. https://journal.uokufa.edu.iq/index.php/ajb/article/view/7776

Tiosano, D., & Hochberg, Z. (2001). Endocrine complications of thalassemia. Journal of Endocrinological Investigation, 24(9), 716–723. https://doi.org/10.1007/bf03343916

Soliman, A. T., Khalafallah, H., & Ashour, R. (2009). Growth and Factors Affecting it in Thalassemia Major. Hemoglobin, 33(sup1), S116–S126. https://doi.org/10.3109/03630260903347781

Toumba, M., & Skordis, N. (2010). Osteoporosis Syndrome in Thalassaemia Major: An Overview. Journal of Osteoporosis, 2010, 1–7. https://doi.org/10.4061/2010/537673

Low, L. C. (1997). Growth, puberty and endocrine function in Beta-Thalassaemia major. Journal of Pediatric Endocrinology and Metabolism, 10(2). https://doi.org/10.1515/jpem.1997.10.2.175

Borgna-Pignatti, C., Rugolotto, S., De Stefano, P., Zhao, H., Cappellini, M., Del Vecchio, G., Romeo, M., Forni, G., Gamberini, Ghilardi, R., Piga, A., & Cnaan, A. (2004, January 1). Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. https://www.haematologica.org/haematologica/article/view/3248

De Sanctis, V. (2002). Growth and Puberty and its management in thalassaemia. Hormone Research in Paediatrics, 58(Suppl. 1), 72–79. https://doi.org/10.1159/000064766

Rebulla, P., & Modell, B. (1991). Transfusion requirements and effects in patients with thalassaemia major. The Lancet, 337(8736), 277–280. https://doi.org/10.1016/0140-6736(91)90881-o

Greco, D. S. (2012). Endocrine causes of calcium disorders. Topics in Companion Animal Medicine, 27(4), 150–155. https://doi.org/10.1053/j.tcam.2012.11.001

Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2012). Intracellular calcium homeostasis and signaling. Metal Ions in Life Sciences, 119–168. https://doi.org/10.1007/978-94-007-5561-1_5

Brown, E. M. (2013). Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 27(3), 333–343. https://doi.org/10.1016/j.beem.2013.02.006

Fleet, J. C. (2017). The role of vitamin D in the endocrinology controlling calcium homeostasis. Molecular and Cellular Endocrinology, 453, 36–45. https://doi.org/10.1016/j.mce.2017.04.008

Barré, P. E., Gascon-Barré, M., Meakins, J. L., & Goltzman, D. (1987). Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. The American Journal of Medicine, 82(6), 1259–1262. https://doi.org/10.1016/0002-9343(87)90237-3

Epstein, S., Stern, P. H., Bell, N. H., Dowdeswell, I., & Turner, R. T. (1984). Evidence for abnormal regulation of circulating 1α,25-dihydroxyvitamin D in patients with pulmonary tuberculosis and normal calcium metabolism. Calcified Tissue International, 36(1), 541–544. https://doi.org/10.1007/bf02405362

Gkonos, P. J., London, R., & Hendler, E. D. (1984). Hypercalcemia and Elevated 1,25-Dihydroxyvitamin D Levels in a Patient with End-Stage Renal Disease and Active Tuberculosis. New England Journal of Medicine, 311(26), 1683–1685. https://doi.org/10.1056/nejm198412273112607

Breslau, N. A. (1984). Hypercalcemia Associated with Increased Serum Calcitriol Levels in Three Patients with Lymphoma. Annals of Internal Medicine, 100(1), 1. https://doi.org/10.7326/0003-4819-100-1-1

Rosenthal, N., Insogna, K. L., Godsall, J. W., Gac, A., Smaldone, L., Waldron, J. A., & Stewart, A. F. (1985). Elevations in Circulating 1,25-Dihydroxyvitamin D in Three Patients with Lymphoma-Associated Hypercalcemia*. The Journal of Clinical Endocrinology & Metabolism, 60(1), 29–33. https://doi.org/10.1210/jcem-60-1-29

Kantarjian, H. M., Saad, M. F., Estey, E. H., Sellin, R. V., & Samaan, N. A. (1983). Hypercalcemia in disseminated candidiasis. The American Journal of Medicine, 74(4), 721–724. https://doi.org/10.1016/0002-9343(83)91033-1

Kozeny, G. A., Barbato, A. L., Bansal, V. K., Vertuno, L. L., & Hano, J. E. (1984). Hypercalcemia Associated with Silicone-Induced Granulomas. New England Journal of Medicine, 311(17), 1103–1105. https://doi.org/10.1056/nejm198410253111707

Mundy, G. R., & Guise, T. A. (1999). Hormonal control of calcium homeostasis. Clinical Chemistry, 45(8), 1347–1352. https://doi.org/10.1093/clinchem/45.8.1347

Bell, N. H., Epstein, S., Greene, A., Shary, J., Oexmann, M. J., & Shaw, S. (1985). Evidence for alteration of the vitamin D-endocrine system in obese subjects. Journal of Clinical Investigation, 76(1), 370–373. https://doi.org/10.1172/jci111971

Lambert, P. W., Hollis, B. W., Bell, N. H., & Epstein, S. (1980). Demonstration of a lack of change in serum 1 alpha,25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. Journal of Clinical Investigation, 66(4), 782–791. https://doi.org/10.1172/jci109916

Gallagher, J. C., Riggs, B. L., Eisman, J., Hamstra, A., Arnaud, S. B., & Deluca, H. F. (1979). Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. Journal of Clinical Investigation, 64(3), 729–736. https://doi.org/10.1172/jci109516

Norman, D. A., Fordtran, J. S., Brinkley, L. J., Zerwekh, J. E., Nicar, M. J., Strowig, S. M., & Pak, C. Y. (1981). Jejunal and ileal adaptation to alterations in dietary calcium: changes in calcium and magnesium absorption and pathogenetic role of parathyroid hormone and 1,25-dihydroxyvitamin D. Journal of Clinical Investigation, 67(6), 1599–1603. https://doi.org/10.1172/jci110194

Cohn, S., Abesamis, C., Yasumura, S., Aloia, J., Zanzi, I., & Ellis, K. (1977). Comparative skeletal mass and radial bone mineral content in black and white women. Metabolism, 26(2), 171–178. https://doi.org/10.1016/0026-0495(77)90052-x

Dalén, N., Hallberg, D., & Lamke, B. (1975). BONE MASS IN OBESE SUBJECTS. Acta Medica Scandinavica, 197(1–6), 353–355. https://doi.org/10.1111/j.0954-6820.1975.tb04933.x

Pu, F., Chen, N., & Xue, S. (2016). Calcium intake, calcium homeostasis and health. Food Science and Human Wellness, 5(1), 8–16. https://doi.org/10.1016/j.fshw.2016.01.001

Carmeliet, G., Van Cromphaut, S., Daci, E., Maes, C., & Bouillon, R. (2003). Disorders of calcium homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 17(4), 529–546. https://doi.org/10.1016/j.beem.2003.08.001

Nordin, B. (1990). Calcium homeostasis. Clinical Biochemistry, 23(1), 3–10. https://doi.org/10.1016/0009-9120(90)90309-i

Downloads

Published

03-02-2025