Micronutrient-Endocrine Interactions: A Critical Review of the Molecular Mechanisms Underlying Hormonal Regulation – A Case Study from Pakistan, Iran, Azerbaijan and Russia
Keywords:
Endocrine functions, Hormone regulation, Micronutrients, Zinc, Selenium, IronAbstract
Essential micronutrients are vital for regulating hormonal balance and supporting the integrity of the endocrine system, which is critical for maintaining optimal human health. By examining facts and analyzing data collected from various primary and secondary sources belong to Pakistan, Iran, Azerbaijan and Russia, this review article interrogates the crucial roles of key micronutrients -- zinc, iodine, selenium, iron and calcium (vitamin D) -- on the endocrine system. Adequate intake of these essential nutrients is important for hormone production. Excess or deficiency of these nutrients can adversely affect health, disturb hormonal balance, and lead to severe diseases. Zinc is crucial for maintaining osteo-muscular integrity, regulating thyroid hormone biosynthesis, and exerting antioxidant properties. Dysregulation of zinc is implicated in the pathogenesis of diabetes mellitus and reproductive dysfunction. Iodine is essential for thyroid hormone synthesis, and its dysregulation can result in hypothyroidism or hyperthyroidism. Additionally, iodine influences cardiovascular health and glucose metabolism. Adequate iodine intake is particularly crucial for pregnant and lactating women to ensure fetal health. In addition to other nutrients, selenium plays a pivotal role in glucose regulation, the production of brain hormones, and metabolism. Its deficiency can lead to metabolic syndrome, obesity, diabetes, and fertility issues. Furthermore, iron overload in thalassemia patients adversely affects hormonal balance. It impacts growth due to abnormal mineralization of bones, disturbs normal sexual development, disrupts thyroid hormone production, and causes diabetes mellitus. Vitamin D and calcium are essential for bone health and parathyroid hormone production. Uncontrolled regulation of these hormones can lead to osteoporosis and hyperthyroidism. Moreover, vitamin D is important for heart and muscle contraction, and its disturbance can result in severe disorders such as myocardial infarction and stroke. This review emphasizes the critical role of micronutrient homeostasis in maintaining endocrine function and highlights the underlying mechanisms by which these nutrients modulate hormonal regulation. The article underscores the importance of optimizing micronutrient status to prevent endocrinopathies and promote overall physiological well-being.
References
La Perle, K. M. D., & Dintzis, S. M. (2017). Endocrine system. In Elsevier eBooks (pp. 251–273). https://doi.org/10.1016/b978-0-12-802900-8.00015-4
Hackney, A. C., & Lane, A. R. (2015). Exercise and the regulation of endocrine hormones. Progress in Molecular Biology and Translational Science, 293–311. https://doi.org/10.1016/bs.pmbts.2015.07.001
Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., & Kate, E. C. (2020). Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. International Journal of Food Sciences, 3(1), 1–32. https://doi.org/10.47604/ijf.1024
Kopp, P. (2001). Human Genome and Diseases: Review¶The TSH receptor and its role in thyroid disease. Cellular and Molecular Life Sciences, 58(9), 1301–1322. https://doi.org/10.1007/pl00000941
Shergill-Bonner, R. (2017). Micronutrients. Paediatrics and Child Health, 27(8), 357–362. https://doi.org/10.1016/j.paed.2017.04.002
Shenkin, A. (2006). The key role of micronutrients☆. Clinical Nutrition, 25(1), 1–13. https://doi.org/10.1016/j.clnu.2005.11.006
Shenkin, A. (2006). Micronutrients in health and disease. Postgraduate Medical Journal,82(971),559–567.https://doi.org/10.1136/pgmj.2006.047670
Black, R. E. (2001). Micronutrients in pregnancy. British Journal of Nutrition, 85(S2), S193–S197. https://doi.org/10.1079/bjn2000314
Baltaci, A. K., Mogulkoc, R., & Baltaci, S. B. (2019). The role of zinc in the endocrine system. https://hdl.handle.net/20.500.12395/38324
Krishnamurthy, H. K., Reddy, S., Jayaraman, V., Krishna, K., Rajasekaran, K. E., Wang, T., Bei, K., & Rajasekaran, J. J. (2023). Association of micronutrients and prevalence of antibodies in hyperthyroidism. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.109375
Barceloux D. G. (1999). Zinc. Journal of toxicology. Clinical toxicology, 37(2), 279–292. https://doi.org/10.1081/clt-100102426
King, J. C., Shames, D. M., & Woodhouse, L. R. (2000). Zinc homeostasis in humans. Journal of Nutrition, 130(5), 1360S-1366S. https://doi.org/10.1093/jn/130.5.1360s
Agnew, U. M., & Slesinger, T. L. (2023). Zinc toxicity. In StatPearls. StatPearls Publishing. PMID: 32119435
Brandão-Neto, J., Saturnino, A. C. R. D., Leite, L. D., De Medeiros Rocha, É. D., Marcos, C. M. P., Da Silva, C. a. B., Marchini, J. S., De Rezende, A. A., Almeida, M. D. G., & Da Cunha Medeiros, A. (2006). Lack of acute zinc effect on thyrotropin-releasing hormone–stimulated thyroid-stimulating hormone secretion during oral zinc tolerance test in healthy men. Nutrition Research, 26(10), 493–496. https://doi.org/10.1016/j.nutres.2006.08.010
Kucharzewski, M., Braziewicz, J., Majewska, U., & Gózdz, S. (2003). Copper, Zinc, and Selenium in Whole Blood and Thyroid Tissue of People with Various Thyroid Diseases. Biological Trace Element Research, 93(1–3), 9–18. https://doi.org/10.1385/bter:93:1-3:9
Molenda, M., & Kolmas, J. (2023). The role of zinc in bone tissue health and regeneration—a review. Biological Trace Element Research, 201(12), 5640–5651. https://doi.org/10.1007/s12011-023-03631-1
Formigari, A., Irato, P., & Santon, A. (2007). Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 146(4), 443–459. https://doi.org/10.1016/j.cbpc.2007.07.010
Catania, A. S., Barros, C. R., & Ferreira, S. R. (2009). Vitaminas e minerais com propriedades antioxidantes e risco cardiometabólico: controvérsias e perspectivas [Vitamins and minerals with antioxidant properties and cardiometabolic risk: controversies and perspectives]. Arquivos brasileiros de endocrinologia e metabologia, 53(5), 550–559. https://doi.org/10.1590/s0004-27302009000500008
Monaco, F. (2003). Classification of Thyroid Diseases: Suggestions for a revision. The Journal of Clinical Endocrinology & Metabolism, 88(4), 1428–1432. https://doi.org/10.1210/jc.2002-021260
Garber, J. R., Cobin, R. H., Gharib, H., Hennessey, J. V., Klein, I., Mechanick, J. I., Pessah-Pollack, R., Singer, P. A., & Woeber, K. A. (2012). Clinical Practice Guidelines for Hypothyroidism in Adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocrine Practice, 18(6), 988–1028. https://doi.org/10.4158/ep12280.gl
Chausmer, A. B. (1998). Zinc, insulin and diabetes. Journal of the American College of Nutrition, 17(2), 109–115. https://doi.org/10.1080/07315724.1998.10718735
Arquilla, E. R., Packer, S., Tarmas, W., & Miyamoto, S. (1978). The effect of zinc on insulin metabolism. Endocrinology, 103(4), 1440–1449. https://doi.org/10.1210/endo-103-4-1440
Delange, F. (1993). Requirements of iodine in humans. In Springer eBooks (pp. 5–15). https://doi.org/10.1007/978-1-4899-1245-9_1
Lazarus, J. H. (2015). The importance of iodine in public health. Environmental Geochemistry and Health, 37(4), 605–618. https://doi.org/10.1007/s10653-015-9681-4
Leung, A. M., & Braverman, L. E. (2013). Consequences of excess iodine. Nature Reviews Endocrinology, 10(3), 136–142. https://doi.org/10.1038/nrendo.2013.251
World Health Organization. (2005). Vitamin and mineral requirements in human nutrition (2nd ed.). World Health Organization.
Leung, A., Pearce, E. N., & Braverman, L. E. (2010). Role of iodine in thyroid physiology. Expert Review of Endocrinology & Metabolism, 5(4), 593–602. https://doi.org/10.1586/eem.10.40
Liu, J., Liu, L., Jia, Q., Zhang, X., Jin, X., & Shen, H. (2019). Effects of excessive iodine intake on blood glucose, blood pressure, and blood lipids in adults. Biological Trace Element Research, 192(2), 136–144. https://doi.org/10.1007/s12011-019-01668-9
Laurberg, P., Cerqueira, C., Ovesen, L., Rasmussen, L. B., Perrild, H., Andersen, S., Pedersen, I. B., & Carlé, A. (2010). Iodine intake as a determinant of thyroid disorders in populations. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1), 13–27. https://doi.org/10.1016/j.beem.2009.08.013
Dorea, J. G. (2002). Iodine nutrition and breast feeding. Journal of Trace Elements in Medicine and Biology, 16(4), 207–220. https://doi.org/10.1016/s0946-672x(02)80047-5
Bath, S. C. (2024). Thyroid function and iodine intake: global recommendations and relevant dietary trends. Nature Reviews Endocrinology, 20(8), 474–486. https://doi.org/10.1038/s41574-024-00983-z
KöHrle, J., Jakob, F., Contempre, B., & Dumont, J. E. (2005). Selenium, the thyroid, and the endocrine system. Endocrine Reviews, 26(7), 944–984. https://doi.org/10.1210/er.2001-0034
Ventura, M., Melo, M., & Carrilho, F. (2017). Selenium and thyroid disease: From pathophysiology to treatment. International Journal of Endocrinology, 2017, 1–9. https://doi.org/10.1155/2017/1297658
Cavedon, E., Manso, J., Negro, I., Censi, S., Serra, R., Busetto, L., Vettor, R., Plebani, M., Pezzani, R., Nacamulli, D., & Mian, C. (2020). Selenium Supplementation, Body Mass Composition, and Leptin Levels in Patients with Obesity on a Balanced Mildly Hypocaloric Diet: A Pilot Study. International Journal of Endocrinology, 2020, 1–7. https://doi.org/10.1155/2020/4802739
Peters, K. M., Carlson, B. A., Gladyshev, V. N., & Tsuji, P. A. (2018). Selenoproteins in colon cancer. Free Radical Biology and Medicine, 127, 14–25. https://doi.org/10.1016/j.freeradbiomed.2018.05.075
Schomburg, L. (2019). The other view: the trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. HORMONES, 19(1), 15–24. https://doi.org/10.1007/s42000-019-00150-4
Yuan, Z., Xu, X., Ye, H., Jin, L., Zhang, X., & Zhu, Y. (2015). High levels of plasma selenium are associated with metabolic syndrome and elevated fasting plasma glucose in a Chinese population: A case-control study. Journal of Trace Elements in Medicine and Biology, 32, 189–194. https://doi.org/10.1016/j.jtemb.2015.07.009
Vinceti, M., Filippini, T., & Rothman, K. J. (2018). Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. European Journal of Epidemiology, 33(9), 789–810. https://doi.org/10.1007/s10654-018-0422-8
Bj, K., Sm, K., Kh, P., Hs, P., & Cs, M. (2014). Levels of circulating selenoprotein P, fibroblast growth factor (FGF) 21 and FGF23 in relation to the metabolic syndrome in young children. International Journal of Obesity, 38(12), 1497–1502. https://doi.org/10.1038/ijo.2014.45
Kryczyk‐Kozioł, J., Zagrodzki, P., Prochownik, E., Błażewska‐Gruszczyk, A., Słowiaczek, M., Sun, Q., Schomburg, L., Ochab, E., & Bartyzel, M. (2021). Positive effects of selenium supplementation in women with newly diagnosed Hashimoto’s thyroiditis in an area with low selenium status. International Journal of Clinical Practice, 75(9). https://doi.org/10.1111/ijcp.14484
Zhou, H., Wang, T., Li, Q., & Li, D. (2018). Prevention of Keshan Disease by Selenium Supplementation: a Systematic Review and Meta-analysis. Biological Trace Element Research, 186(1), 98–105. https://doi.org/10.1007/s12011-018-1302-5
Mintziori, G., Mousiolis, A., Duntas, L. H., & Goulis, D. G. (2019). Evidence for a manifold role of selenium in infertility. HORMONES, 19(1), 55–59. https://doi.org/10.1007/s42000-019-00140-6
Boitani, C., & Puglisi, R. (2009). Selenium, a key element in spermatogenesis and male fertility. Advances in Experimental Medicine and Biology, 65–73. https://doi.org/10.1007/978-0-387-09597-4_4
Hansen, J. C., & Deguchi, Y. (1996). Selenium and Fertility in Animals and Man–A Review. Acta Veterinaria Scandinavica, 37(1), 19–30. https://doi.org/10.1186/bf03548116
Bleau, G., Lemarbre, J., Faucher, G., Roberts, K. D., & Chapdelaine, A. (1984). Semen selenium and human fertility. Fertility and Sterility, 42(6), 890–894. https://doi.org/10.1016/s0015-0282(16)48261-0
Ingold, I., Aichler, M., Yefremova, E., Roveri, A., Buday, K., Doll, S., Tasdemir, A., Hoffard, N., Wurst, W., Walch, A., Ursini, F., Angeli, J. P. F., & Conrad, M. (2015). Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (GPX4) confers a dominant-negative effect in male fertility. Journal of Biological Chemistry, 290(23), 14668–14678. https://doi.org/10.1074/jbc.m115.656363
Qazi, I. H., Angel, C., Yang, H., Pan, B., Zoidis, E., Zeng, C., Han, H., & Zhou, G. (2018). Selenium, selenoproteins, and Female Reproduction: A review. Molecules, 23(12), 3053. https://doi.org/10.3390/molecules23123053
De Dreuzy, E., Bhukhai, K., Leboulch, P., & Payen, E. (2016). Current and future alternative therapies for beta-thalassemia major. Biomedical Journal, 39(1), 24–38. https://doi.org/10.1016/j.bj.2015.10.001
Taher, A. T., Musallam, K. M., Karimi, M., El-Beshlawy, A., Belhoul, K., Daar, S., Saned, M., El-Chafic, A., Fasulo, M. R., & Cappellini, M. D. (2009). Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood, 115(10), 1886–1892. https://doi.org/10.1182/blood-2009-09-243154
Kattamis, C., Liakopoulou, T., & Kattamis, A. (1990). Growth and Development in Children with Thalassaemia Major. Acta Paediatrica, 79(s366), 111–117. https://doi.org/10.1111/j.1651-2227.1990.tb11611.x
Pantelakis, S. (1994). Growth patterns in patients with thalassaemia major. Acta Paediatrica, 83(s406), 109–110. https://doi.org/10.1111/j.1651-2227.1994.tb13437.x
Al-Hakeim, H. K. a. H., & Al-Hakany, M. F. M. (2013, December 2). The effect of iron overload on the function of some endocrine glands in Β-Thalassemia major patients. https://journal.uokufa.edu.iq/index.php/ajb/article/view/7776
Tiosano, D., & Hochberg, Z. (2001). Endocrine complications of thalassemia. Journal of Endocrinological Investigation, 24(9), 716–723. https://doi.org/10.1007/bf03343916
Soliman, A. T., Khalafallah, H., & Ashour, R. (2009). Growth and Factors Affecting it in Thalassemia Major. Hemoglobin, 33(sup1), S116–S126. https://doi.org/10.3109/03630260903347781
Toumba, M., & Skordis, N. (2010). Osteoporosis Syndrome in Thalassaemia Major: An Overview. Journal of Osteoporosis, 2010, 1–7. https://doi.org/10.4061/2010/537673
Low, L. C. (1997). Growth, puberty and endocrine function in Beta-Thalassaemia major. Journal of Pediatric Endocrinology and Metabolism, 10(2). https://doi.org/10.1515/jpem.1997.10.2.175
Borgna-Pignatti, C., Rugolotto, S., De Stefano, P., Zhao, H., Cappellini, M., Del Vecchio, G., Romeo, M., Forni, G., Gamberini, Ghilardi, R., Piga, A., & Cnaan, A. (2004, January 1). Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. https://www.haematologica.org/haematologica/article/view/3248
De Sanctis, V. (2002). Growth and Puberty and its management in thalassaemia. Hormone Research in Paediatrics, 58(Suppl. 1), 72–79. https://doi.org/10.1159/000064766
Rebulla, P., & Modell, B. (1991). Transfusion requirements and effects in patients with thalassaemia major. The Lancet, 337(8736), 277–280. https://doi.org/10.1016/0140-6736(91)90881-o
Greco, D. S. (2012). Endocrine causes of calcium disorders. Topics in Companion Animal Medicine, 27(4), 150–155. https://doi.org/10.1053/j.tcam.2012.11.001
Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2012). Intracellular calcium homeostasis and signaling. Metal Ions in Life Sciences, 119–168. https://doi.org/10.1007/978-94-007-5561-1_5
Brown, E. M. (2013). Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 27(3), 333–343. https://doi.org/10.1016/j.beem.2013.02.006
Fleet, J. C. (2017). The role of vitamin D in the endocrinology controlling calcium homeostasis. Molecular and Cellular Endocrinology, 453, 36–45. https://doi.org/10.1016/j.mce.2017.04.008
Barré, P. E., Gascon-Barré, M., Meakins, J. L., & Goltzman, D. (1987). Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. The American Journal of Medicine, 82(6), 1259–1262. https://doi.org/10.1016/0002-9343(87)90237-3
Epstein, S., Stern, P. H., Bell, N. H., Dowdeswell, I., & Turner, R. T. (1984). Evidence for abnormal regulation of circulating 1α,25-dihydroxyvitamin D in patients with pulmonary tuberculosis and normal calcium metabolism. Calcified Tissue International, 36(1), 541–544. https://doi.org/10.1007/bf02405362
Gkonos, P. J., London, R., & Hendler, E. D. (1984). Hypercalcemia and Elevated 1,25-Dihydroxyvitamin D Levels in a Patient with End-Stage Renal Disease and Active Tuberculosis. New England Journal of Medicine, 311(26), 1683–1685. https://doi.org/10.1056/nejm198412273112607
Breslau, N. A. (1984). Hypercalcemia Associated with Increased Serum Calcitriol Levels in Three Patients with Lymphoma. Annals of Internal Medicine, 100(1), 1. https://doi.org/10.7326/0003-4819-100-1-1
Rosenthal, N., Insogna, K. L., Godsall, J. W., Gac, A., Smaldone, L., Waldron, J. A., & Stewart, A. F. (1985). Elevations in Circulating 1,25-Dihydroxyvitamin D in Three Patients with Lymphoma-Associated Hypercalcemia*. The Journal of Clinical Endocrinology & Metabolism, 60(1), 29–33. https://doi.org/10.1210/jcem-60-1-29
Kantarjian, H. M., Saad, M. F., Estey, E. H., Sellin, R. V., & Samaan, N. A. (1983). Hypercalcemia in disseminated candidiasis. The American Journal of Medicine, 74(4), 721–724. https://doi.org/10.1016/0002-9343(83)91033-1
Kozeny, G. A., Barbato, A. L., Bansal, V. K., Vertuno, L. L., & Hano, J. E. (1984). Hypercalcemia Associated with Silicone-Induced Granulomas. New England Journal of Medicine, 311(17), 1103–1105. https://doi.org/10.1056/nejm198410253111707
Mundy, G. R., & Guise, T. A. (1999). Hormonal control of calcium homeostasis. Clinical Chemistry, 45(8), 1347–1352. https://doi.org/10.1093/clinchem/45.8.1347
Bell, N. H., Epstein, S., Greene, A., Shary, J., Oexmann, M. J., & Shaw, S. (1985). Evidence for alteration of the vitamin D-endocrine system in obese subjects. Journal of Clinical Investigation, 76(1), 370–373. https://doi.org/10.1172/jci111971
Lambert, P. W., Hollis, B. W., Bell, N. H., & Epstein, S. (1980). Demonstration of a lack of change in serum 1 alpha,25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. Journal of Clinical Investigation, 66(4), 782–791. https://doi.org/10.1172/jci109916
Gallagher, J. C., Riggs, B. L., Eisman, J., Hamstra, A., Arnaud, S. B., & Deluca, H. F. (1979). Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. Journal of Clinical Investigation, 64(3), 729–736. https://doi.org/10.1172/jci109516
Norman, D. A., Fordtran, J. S., Brinkley, L. J., Zerwekh, J. E., Nicar, M. J., Strowig, S. M., & Pak, C. Y. (1981). Jejunal and ileal adaptation to alterations in dietary calcium: changes in calcium and magnesium absorption and pathogenetic role of parathyroid hormone and 1,25-dihydroxyvitamin D. Journal of Clinical Investigation, 67(6), 1599–1603. https://doi.org/10.1172/jci110194
Cohn, S., Abesamis, C., Yasumura, S., Aloia, J., Zanzi, I., & Ellis, K. (1977). Comparative skeletal mass and radial bone mineral content in black and white women. Metabolism, 26(2), 171–178. https://doi.org/10.1016/0026-0495(77)90052-x
Dalén, N., Hallberg, D., & Lamke, B. (1975). BONE MASS IN OBESE SUBJECTS. Acta Medica Scandinavica, 197(1–6), 353–355. https://doi.org/10.1111/j.0954-6820.1975.tb04933.x
Pu, F., Chen, N., & Xue, S. (2016). Calcium intake, calcium homeostasis and health. Food Science and Human Wellness, 5(1), 8–16. https://doi.org/10.1016/j.fshw.2016.01.001
Carmeliet, G., Van Cromphaut, S., Daci, E., Maes, C., & Bouillon, R. (2003). Disorders of calcium homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 17(4), 529–546. https://doi.org/10.1016/j.beem.2003.08.001
Nordin, B. (1990). Calcium homeostasis. Clinical Biochemistry, 23(1), 3–10. https://doi.org/10.1016/0009-9120(90)90309-i
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Insights of Pakistan, Iran and the Caucasus Studies

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.